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The present short report constitutes a continuation to the initial study of the bi-partial ver­
sion of the well known original p-median or p-center facility location problem. The bi­
partial approach, developed by the author, primarily to deal with the clustering problems, 
is shown here to work for a problem that does not, in principle, possess some of the essen­
tial properties, inherent to the bi-partial formulations. It is shown that the classical general 
objective function of the problem considered, namely that of facility location, can be cor­
rectly interpreted in terms of the bi-partial approach, that it in fact possesses the essential 
properties that are at the core of the bi-partial approach, and, finally, that the general algo­
rithmic precepts of the bi-partial approach can also be effectively applied to this problem. 
In this particular case, the precepts of the classical k-means procedure are referred to. The 
effectiveness of the proposal is shown for certain variants of the problem, with the bi­
partial counterparts appropriately defined. It is proposed that the use of bi-partial approach 
for the class of problems, represented by the general objective function of facility location, 
and its most basic variants, can be beneficial from the points of view of both flexibility 
and interpretation. 

Keywords: facility location, p-median, p-center, clustering, bi-partial approach 

I. The facility location problem 

The facility location problem is among the classical, historically well-rooted problems of 
Operational Research, having its origins, in the sense, in which it is being formulated and 
solved nowadays, in the 19th century economic analyses. There are several , different, 
streams of thought, concerning the formulation, meaning, as well as the methods and 
sense of solving the problem. Those, who stick to its "geometrical", rather than economic, 
nature, refer much farther back than ' just" to Alfred Weber, recalling Fermat and Torricel­
li from the I 7th century and Simpson from the I 8th century. This "geometrical" direction, 
though, is not of the primary interest here, even if it offers important insights, both in 
terms of numerical procedures, and the associated interpretations. 

We wish to address the general facility location problem as it appears in most of the pre­
sent-day studies, even though, of course, there are (numerous, indeed) aspects, appearing 
in some formulations (constraints, requirements) that shall not enter explicitly the form 
here considered. It is, namely, not our intention to demonstrate that the approach proposed 
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can and should be used for all kinds of the so diverse facility location problems. That is 
why we address what we call the "generic facility location problem", i.e. 

min I q(L;eAq d(x;,xq) + c(Aq,xq)) (I) 

where minimisation is performed with respect to {(Aq,xq)}q, 

and where q is the index of the facility (q = 1, ... ,p) and of its catchment (Aq), i is the index 
of the customer / demand locations (i El= { I, . .. ,n} ), x; being these locations and their 
characteristics, xq, on the other hand - being the locations and characteristics of the facili­
ties; the catchments Aq are interpreted as subsets of/, AqQ. The functions d(. ,.) and c(. ,.) 
have the interpretation of costs, in the former case - costs closely associated with distance 
between x; and xq, while in the latter case - with, potentially, quite a variety of factors. 
These factors may include, in particular: (a) the setup cost (which itself may be constant, 
c, or, for instance, may depend upon the manner, in which/ is split into Aq), (b) the capaci­
ty increase cost, depending directly upon cardinality of Aq, denoted nq, ( c) the location 
cost, c(xq), a simile of d(. ,. ) for the upper-level supply problem (that is - depending upon 
the cost of transport from some external location). 

The essential interpretation of(!) is that we wish to locate the " facilities" (xq, q = 1, .. . ,n) 
and to establish their catchments Aq, i.e. we wish to determine {(Aq,xq)}q, given the set of 
customer I demand points x;, that is - primarily their locations, in such a way as to mini­
mise the overall cost (this cost may be understood in terms of [ discounted] total cost of 
operation over the lifetime of the given undertaking, or, say annual cost, including amorti­
sation of the capital expenses). 

So, we wish to locate xq so as to have the sums of costs-distances d(x;,xq) for all x; belong­
ing to the catchments Aq as little as possible, while also minimising the cost of establishing 
and maintaining the facilities, c(Aq,xq). Were it not for the latter component, the "opti­
mum" would be to have as many facilities as there are demand points, so that the absolute 
minimum of(!) is reached (possibly equal zero, see Section 2). At the other end of the 
stick just one, single facility would be located, (almost certainly) minimising the second 
cost component. Thus, we look for an equilibrium between the two components, this equi­
librium corresponding to the minimum of(l). 

Let us add at this point that formulation (I) implicitly - via the above mentioned notion of 
"equilibrium" - includes the detern1ination of the optimum number of facilities / catch­
ments, p. It must be emphasised, though, that in the majority of actual studies and models 
this number is simply given, such a far-reaching assumption being justified, on the one 
hand, by the algorithmic or numerical problems, and on the other - by the fact that in 
many cases the choice of the number and locations of the facilities is highly limited. 

2. Some important details and their consideration 

Demand variation across space 

The demand points X ; may, of course, feature different demand volumes, and this fact 
ought to find a reflection in the problem formulation. In an explicit manner this could be: 

(2) 

where w; correspond to demand volumes, so that, naturally, for higher w; "shorter" dis­
tances d(x;,xq) ought to be secured in the solution. 



Bi-partial version of p-median / p-center problem 

Obviously, given Aq and the locations of X; in it, the best location for xq is some sort of a 
"median", or a definite location that is possibly close to this "median", or to an otherwise 
defined centre, of this set oflocations, provided distanced(.,.) is appropriately defined, see 
further on. lfso, the introduction ofw; would imply the search for a weighted "median" or 
centre, with w; being respective weights. 

It is, of course, possible to avoid the introduction of explicit weights by assuming some 
unit of demand, say w, and then placing at location x; the number of demand points, corre­
sponding to w;lw. (Here, we leave out the question of what happens ifw;/w is not an inte­
ger or is not very close to an integer.) 

In reality, the distinction of x; and the association of demand w; at these points is just the 
matter convenience, and not so much of modelling accuracy: it is most often the case that 
x ; actually correspond to some potential facility locations, to which demand, being gener­
ated more or less continuously over space, is simply assigned. Hence, we deal here with a 
regression issue, namely: how to determine the points X; in an optimum manner, given 
density of demand over space, w(x), and given "disturbances" to the continuity of space, in 
the form of, first of all, transport infrastructure. 

Locations of facilities vs. locations of demand points 

It is most natural and simplest to assume that we just deal with a set oflocations (e.g. set­
tlement units), corresponding to x;, and thatxq are selected among these. The obvious ex­
amples are: the set l is the set oflocalities, where the facilities could be located, but where 
also demand is generated. !fa facility xq is located atx;, then d(x;,xq) equals zero (unless 
some special assumptions are made on the shape of d(., . )), lowering the overall cost ( espe­
cially when a high weight (demand) w; is assigned to this location). 

It is, however, quite imaginable that (a) not all of the locations of x; are feasible from the 
point of view oflocatingxq, and so we deal with a subset /!g of the potential locations of 
xq ; or (b) the set of potential locations ofxq is entirely different from that ofx;, although, of 
course, it has to belong to the same space from the point of view of distance calculation. 

Actually, none of these three instances (exhausting, in fact, all of the possible ones), intro­
duces a "qualitative" difference into the formulations ( 1) or (2) (limitations to the set of 
potential facility locations). The sole difference may lie, therefore, in the technical details 
of the respective algorithms. 

Overlapping and/or fuzzy catchments 

The function c(Aq,xq) is, in principle, meant to express the features of the facility q that 
directly depend upon the properties of the catchment Aq and the actual location in space 
(local demand and distances to cover). From the managerial point of view, though, a stiff 
and strict assignment of i to q may be an unnecessary constraint. Thus, demand from the 
locations i that belong to a neighbouring q might be satisfied from the second-closest, or 
even the third-closest facility q ', when a need arises. The essential point is - to what ex­
tent is this accounted for in a potential solution? 

If the choice of the second- or third-closest facility is just a matter of everyday managerial 
choice, then it is not necessary to account for this in the formulation of the problem and in 
the solution. Yet, a requirement may be formulated, bearing an influence on the form of 
the problem and the solution, that explicit rules be found of assigning demand locations x; 

to facilities q, and thus the degree of complication may get much higher. Still , in the per­
spective that we aim at here, if the catchments Aq are defined as fuzzy sets of x;, i.e. a loca-



Jan W. Owsillski 

tion x; may belong, in the solution, to the particular catchments Aq in the degrees µ;q E 

[0,1] , with, possibly (and, indeed, reasonably), imposed condition that Lq µ;q = I for all 
i EI (this meaning that we deal with what is called the "Ruspini partition"), then , once 
found, the thus defined catchments can embody in quite a natural manner the requirements 
of the kind here mentioned. 

Multi-location facilities 

Another, similar requirement might concern the presence of several facility locations per 
catchment, like, e.g. "primary" and "secondary" centres, which serve slightly different 
purposes, or customers, for instance - depending upon the volume of goods or services 
(say, post-sales service network, with small outlets for either taking in the equipment for 
repair and giving it back to the customers, and higher rank facilities, where actual repairs 
are being done, parts are stored, etc.). In this manner, a "hierarchical" version of the prob­
lem might arise (see also the analogous comment on the regression issue, formulated in 
the preceding point) that would require determination of two levels of Aq, the lower level 
being denoted B,, so that conditions 

Uq- 1, ,pAq= I = {l , .. . ,n} 

and 

Ur=i, ... ,cardAq Brq=Aq, V q = 1, ... ,p, 

are preserved (the double index rq referring to the lower level catchments r belonging to 
the upper level catchments q). This requirement, indeed, changes the perspective on the 
solution, since, at least, the dimensionality of the problem increases dran1atically, even if 
some of the essential features are preserved. Yet, despite this change of perspective, we 
shall return to this kind of problem in this report. 

Extended versions: the universe of the actually solved problems 

The aspects, which have been roughly outlined in the preceding points, constitute usually 
just a minor portion of the problems currently being formulated ("modelled") and solved 
in the broad domain , referred to as "location analysis". These problems include a variety 
of aspects, which, at least potentially, characterise the real-life situations (in addition to 
those already mentioned and expressed), such as, in particular: 

-- limited facility capacities, usually associated with the value ofLeAqW;, when the 
weights w; correspond to the transported / stored / produced quantity; 

-- limited capacities of the edges (i,j), again meaning that the sum ofw;, coinciding 
in the solution with a given edge, is limited 1; 

-- selection of transport means, that is - introduction of an index m, corresponding to 
the choice of transport means, with which various costs and capacities are asso­
ciated; 

-- accounting for the time dimension, for instance - in the form of succession of fa­
cility construction over time; or 

1 this aspect, like the foll owing ones, cannot be accommodated directly in the formulations forwarded here -
they require more elaborate fonns of the problem, especially invol ving additional indices. 



Bi-partial version of p-median Ip-center problem 

-- accounting for a more realistic cost calculation, including, for instance, cost of 
transporting a unit of goods, taking, in particular, into account the relation to the 
capacity of the transport means (including the negative impact of excess slacks). 

All these lead to quite complex formulations , which are usually squeezed into the linear or 
at most quadratic mathematical programming forms, continuous, integer, binary, and 
mixed, and then solved with professional solvers, using a variety of tricks, which are nec­
essary both in view of the requirements, concerning the nature of solutions to these prob­
lems (e.g. binary variables), and the dimensionality of the problems (e.g. the quite fre­
quent very high number of constraints, often in the order of O(nv), where v may easily 
exceed 2, and quite often attains 5). 

Given the complexity of the thus formulated problems, their computational characteristics, 
and, what is here most important: the uncertainties, associated with the values of all the 
coefficients involved (demand, costs, even distances, if one considers farther-off future 
and the development of the transport networks), it is quite common to refer to the "soft" 
methods, the ones providing rough approximations of solutions and the possibility of flex­
ible change of the parameters, defining problem shape. 

2. The bi-partial approach 

The bi-partial approach was developed by the present author at the beginning of the 1980s 
(see Owsinski, 1980, 1981 ), primarily as a way of dealing with the general problem of 
cluster analysis2. The strongest point, and, actually, the essence of the bi-partial approach 
was the capacity of providing the wholesome solution to the clustering problem, including 
the optimum number of clusters, without the need ofreferring to any external (usually 
statistical) criteria. The approach has been recently described in a formal manner in 
Owsinski (2011 , 2012a), and its application to some special narrow task in data analysis 
was provided in Owsinski (2012b). Then, Dvoenko (2014) applied the approach to extend 
in this vein the well-known k-means-type procedure. 

The approach is based on the construction and use of the bi-partial objective function , this 
function being composed, according to the name, of two terms, which, in a very general 
way, can be subsumed for clustering as representin~, respectively: the inner cohesion of 
the clusters and the outer separation of the clusters . Co hes ton w1thm clusters ts measured 
by some function of distances between the objects, or measurements, or samples, inside 
individual clusters, this function being defined over the entire partition of the set ofob­
jects, and denoted Qv(P), where Pis a partition of the set ofn objects, indexed i = 1, .. . ,n, 
into clusters Aq, q = l, ... ,p , and subscript D means that we consider distances inside clus­
ters. The counterpart measure of separation of different clusters is denoted ~(P), where 
we mean a function of similarities of objects in different clusters. The sum of the two, de­
noted Qv5°(P), 

Qi/(P) = Qv(P) + ~(P), 

2 Although, see Owsinski (2011 , 2012a), the approach, in a slightly different variant, can be quite effectively 
used, as well , and that with an interesting generalising interpretation, to deal with the problem of aggregation 
oforderings (rankings). 
3 In some other circumstances the two aspects, or components , can be referred to as "precision" and "distin­
guishability", which, in tum, brings us quite close, indeed, to the standard oppositions, known from various 
domains of data analysis, such as "' fit" and "'generalisation", or "precision" and "recall". 



Jan W. Owsinski 

is minimised, meaning that we seek possibly small distances inside clusters and possibly 
small similarities among clusters. 

This function, QD5(P), has a natural dual , correspondingly denoted Qs°(P), in which the 
two components represent, respectively, cohesion within clusters, measured with similari­
ties (proximities) inside the particular clusters, Qs{P), and distances between different 
clusters, measured with distances between objects, belonging to different clusters, Q°(P). 
The function Qs°(P), 

Qs°(P) = Q:;{_P) + Q°(P), 

is, of course, maximised. 

It should be noted that we do not impose in this general formulation any assumptions nor 
constraints on the way partitions are conceived (e.g. overlapping, or fuzzy, or rough sets, 
as clusters), except for the fact that the clusters have to exhaust the entire set of objects 
considered, just as we do not impose any general form of Qi(P) or Qs°(P) and their re­
spective components. Actually, there exist definite conditions that may be set on the com­
ponents of Ql.(P) and QsD(P), but these conditions are meant to secure the capacity of 
devising an effective solution seeking procedure (see Owsinski, 2012a), and not just the 
essential rationality of the approach, which is supposed to provide the possibility of repre­
senting the generic problem of cluster analysis, and the capacity of comparing the quality 
of solutions (partitions). 

Even though the concept, at its general level, as outlined here, may appear to be close to 
trivial ("putting similar together and dissimilar apart"), first, it corresponds exactly to the 
generic formulation of the problem of cluster analysis, and, second, there exist concrete 
implementations of the two dual objective functions , which form novel and interesting 
approaches, both regarding the problem of cluster analysis and the one of aggregation of 
orderings. Moreover, as mentioned above, if the components of the objective functions are 
endowed with definite, quite plausible properties, the approach leads to effective solution 
algorithms. 

3. The modified bi-partial problem formulation for the facility location 

We shall now attempt to form a link between the two domains here introduced, that is -
the facility location problem and the bi-partial approach. This link has been already vague­
ly signalled by mentioning that the facility location problem may tum out to be too com­
plex to be effectively solved by formulating the standard mathematical programming 
problems and using respective methods and (usually) commercial software, and that, 
therefore, other kinds of techniques - providing some sorts of approximations - might be 
referred to. These techniques might, in particular, be taken from the broad domain of clus­
ter analysis. And the bi-partial approach is exactly designed to solve the basic problem of 
cluster analysis (the application to the aggregation of orderings being, in a way, a side­
effect). 

It should be emphasised that the problem that we address here is different from the majori­
ty of problems, which are considered as instances of application of the bi-partial approach. 
Namely, the problem we address is, explicitly, a classical question in operations research, 
related to location analysis. Not only, though, the interpretation of the problem is quite 
specific, relatively remote from the core of data analysis, but also the very form the prob-
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!em takes is in a way not appropriate for the treatment through the bi-partial formalism, as 
introduced here. 

We deal, namely, in a very simplistic, but also very general manner, with the following 
problem 

min Lq(L;eAq w;d(x;,xq) + c(q)) (3) 

with minimisation being performed over the choice of the set of p points (objects) x; that 
are selected as the central or median points xq, q = I, .. . ,p , along with the determination of 
the catchment subsets Aq, which are assigned to points xq. 

For our further considerations it is of no importance whether the points xq, to be found, 
belong to the set X of objects (medians) or not - i.e. they are only required to be the ele­
ments of the space Ex (centres), to which all the objects, either actually observed, or po­
tentially existing, belong. It is, however, highly important that the second component of 
the objective function in (3), namely Lqc(q), does not involve any notion of distance or 
proximity, as formally postulated in the bi-partial approach. 

Thus, whiled(. ,.) is some measure of distance, like in the general formulation of the bi­
partial approach, where it enters either Q0 (P) or Q°(P), c(q) is a non-negative value, inter­
preted as some cost, related to a facility q and to the subset Aq. The problem (3) is inter­
preted as the one of finding a set of p (q = 1, . .. ,p) locations of facil ities, such that the 
overall cost, composed of the sum of distance and weight related costs between points, 
assigned to the individual facilities (forming subsets Aq), and these facilities, and the sum 
of costs, related uniquely to these facilities ( even though possibly through a function of 
characteristics of the catchments Aq), is minimised. It is, of course, assumed that the costs 
c(q) and distances d(. ,. ) are appropriately (mutually) scaled, in order for the whole to pre­
serve the interpretative sense. 

The costs c(q) may be given in a variety of manners: as equal constants for each arbitrary 
point from X or from Ex, i.e. c, so that the cost component in (3) is simply equal pc, or 
(more realistically) as the values, determined for each point separately, i.e. c(i), or as a 
function, composed of the setup component (say, CJ , if this setup cost is equal for all loca­
tions) and the component that is proportional to the number of locations, assigned to the 
facility q, with the proportionality coefficient equal c2 (that is, the cost for a facility is then 
equal CJ + cardAqc2). Of course, more complex, nonlinear cost functions , including also 
those with CJ replaced by CJ(i), can, as well, be (and sometimes are) considered. Addition­
al complexity is brought by the consideration of demands, specific for each location, or 
transport flows (including the maximum admissible flows) between locations. Some of 
these additional aspects can, though, be relatively easily accommodated within the basic 
formulation (3). 

This problem has a very rich literature, with special numerical interest in its "pure" form , 
without the cost component, mainly devoted to mathematical and geometric properties and 
the respective (approximation) algorithms and their effectiveness. Some of the prominent 
examples of studies in this domain are Hochbaum (1982), Li (20 I I), Arora, Raghavan and 
Rao ( 1998), or Thorup (200 I). As mentioned at the beginning, the origin of the practical 
aspect of the problem is constituted by the so-called Weber problem of location on the 
plane, which got increasingly complex over time, with a vast array of variants, including 
the substantive and numerical aspects already mentioned. Notwithstanding this abundant 
tradition, the issues raised within it and the results obtained, we shall consider here the 
form of(3) in one of its basic variants. 
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4. The not so straightforward way to cluster analysis 

Any Reader with some basic knowledge in cluster analysis shall immediately recognise 
the first component of (3) (and, of course, of (I) and (2)) as corresponding to the vast fam­
ily of the so-called "k-means" algorithms, where such a form is taken as the minimised 
objective function. Indeed, this fact is the source of numerous studies, linking facility lo­
cation problems with clustering approaches. One can cite in this context, for instance, the 
work of Pierre Hansen (e.g. Hansen et al. , 2009), or, in a different perspective, that of Fu­
ruta et al. (2007), but most to the point here is the proposal from Liao and Guo (2008), this 
proposal explicitly linking k-means with facility location, similarly as this was done sev­
eral decades ago by Mulvey and Beck (1984). 4 

The proposal from Liao and Guo (2008) is insofar quite straightforward, but also interest­
ing in practical terms, as the facility of realisation of the basic k-means algorithm allows 
for the relatively uncomplicated accommodation of additional features of the facility loca­
tion problem (e.g. definite constraints on facilities and their sets). 

Thus, while the first component of the function (3) could be treated with some clustering 
approaches, e.g. those based on the k-means type of procedure, the issue is in the way the 
entire function (3) is to be minimised. 

At this point it must be indicated, and, indeed, emphasised, that there is no simple analogy 
between the k-means-like algorithms and the facility location problem, as expressed 
through (I), (2) or (3). The issue resides in the fact that the ' mean ' is, in general, by no 
means the proper solution to the problem of minimum distance sum, this fact being exact­
ly the origin to the classical Fermat-Torricelli problem5. Let us illustrate this fact with an 
example, which will be used later on to also illustrate some other aspects of this essential 
question. 

Assume, namely, that we deal with a unidimensional situation, and consider three cases as 
follows: 

Case, Positions of Mean po- Sum of distanc- Sums of distances from the select-
n = points (loca- sition' es from the ed points (i) having the positions 

tions i) mean x;: 
2 3 

I , 0, 2, 3, 11 4 14 12 12 
n=4 
2, 0, 2, 3, 5, 15 5 20 18 19 
n=5 
3, 0, 2, 3, 5, 10 4 14 14 13 
n=5 

for the sake of simplicity of this example, it was assumed that we refer to the mean, and not to the 
medoid (i.e. the location the closest to the mean among the x,) 

4 Even a glimpse at the article on the "Facility location problem" in Wikipedia and the list of references 
therein makes absolutely obvious the close association between thi s problem and clustering. Yet , the reser­
vations, made explicit here and commented upon, have to be kept in mind. 
5 It is characteristic that many studies, in which clustering is used as a heuri stic approach to solve the facility 
location problem, do not even mention this basic issue, this being, in particular, the case of Liao and Guo 
(2008), quoted before. 
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This trivial example shows (and/or implies) that, 

(i) indeed, the mean is not the solution to the original Fermat-Torricelli problem, 
and 

(ii) the error, resulting from taking the mean as solution, is brought close to the 
minimum (ultimately: arbitrarily close to zero), when: (ii.a) the potentially ex­
isting ' outliers' are not too distant or nonexistent, (ii.b) the objects form dense 
clusters, and there are no significant irregularities to the distribution of points i. 
Indeed, if facilities are located at some points x; and the density of the points, 
assigned to the catchments Aq (and, of course, even more so, if the overall den­
sity of points in X) is sufficiently high, the error here considered can be alto­
gether neglected in view of the potential errors ( or "uncertainties") from other 
sources, indicated before. 

It might be added, concerning the influence of outliers on the difference of results that we 
here focus on, that if the outliers are really so important - they might be either assigned 
separate facilities , if their demand (w;) justifies such a decision, or neglected in the solu­
tion, ifw; is low enough6. 

Summing up - clustering can provide an approximation to the solution of the facility loca­
tion problem, this approximation being insofar justified that the level of uncertainty, in­
volved in the concrete formulations of the facility location problems (especially the more 
complex ones) is indeed very high. 

5. Some other simple examples 

In order to develop the simple examples, illustrating both the problem at hand and the pos­
sibility of using the bi-partial methodology in solving it, we shall consider the formulation 
(3) in the following more concrete, even though still very simple, indeed next to trivial , 
variant: 

(4) 

where c1 is the ( constant) "facility setup cost", while c2 is the ( constant) unit cost, associ­
ated with the servicing of each object i E Aq, except for the "first one", this latter cost be­
ing included in the setup cost ("once we serve at least one unit of demand"). Such a for­
mulation, even if still quite stylised, seems to be fully plausible as an approximation. It 
can, of course, be transformed to 

(4a) 

where it becomes obvious that we could deal away with the component, associated with 
the unit cost c2. We shall keep it, though, for illustrative purposes, since the part, related to 
unit costs may, and usually actually does, take more intricate, nonlinear forms. 

The problem (4) can be, quite formally, and with all the obvious reservations, mentioned, 
anyway, before, moulded into the general bi-partial scheme, i.e. 

min,, ~D(P) = QD(P) + ~(P), (5), 

6 In tenns of the operational research this might be expressed through the element of the objecti ve function 
that assigns lower "'transport capacity" (frequency, volume, ... ) to the outlying location ofa catchment. 
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where partition P encompasses, in this case, both the composition of Aq, q = 1, ... ,p, taken 
together with the number p of facilities, and the location of these facilities , i.e. choice of 
locations from (say) X, as the places for facilities q. 

Now, consider the simple case, shown in Fig. I, with d(.,.) defined as Manhattan distance 
(i.e. the sum of the absolute differences of values along the individual dimensions), the 
cost component of (4) being based on the following parameter values: c1 = 3, c2 = I. 
Again, these numbers, if appropriately interpreted, can be considered plausible (e.g. dis­
tance, which corresponds to the annual transport cost, and c1, which corresponds to annual 
write-off value). 

For this example, Table 1 shows the values of Q'~(P) = Qo(P) + Q5(P), according to (4), 
for a series of partitions P. We consider in this example a nested set of partitions, i.e. in 
each consecutive partition, constituting the series, one of the subsets of objects, a cluster 
Aq, is the sum of some of the clusters from the preceding partition, while all the other clus­
ters are being preserved. Such a nested sequence of partitions is characteristic for a very 
broad family of cluster algorithms, namely the progressive merger or progressive split 
algorithms. 

The character of results from Table 1, even if close to trivial, is quite telling, and indeed 
constitutes a repetition of the observations made for multiple other cases, in which the bi­
partial approach has been applied, associated with the cluster analysis problems. Note, in 
particular, that the values of Qo(P) increase along the series of partitions, while the values 
of Q'.(S) - decrease, and the sum of the two, Q5 0 (P) has a minimum, which, for his simple 
case, corresponds, indeed, to the solution to the problem. 

It is, namely, well known that the optimum (minimum) values of Q0 (P) , defined as in (4), 
that is - as a simile of the classical k-means objective function - decrease with the number 
of clusters, p , reaching Q0 (P) = 0 ("global optimum") for p = n, i.e. when each object (ob­
servation) is a separate cluster, and the objects are their own (obviously, the best!) repre­
sentatives. In the case of the function ( 4 ), the second component increases with p, also in 
quite a natural manner. We deal, therefore, with the opposite monotonicity of the two se­
ries of values, this opposite monotonicity of the optimum values for the consecutive num­
bers of clusters, p, being one of the basic conditions for the rationality of the bi-partial 
objective function. 

For a simple, but teling, comparison, Table 2 shows the results for the very same sequence 
of partitions, but for a somewhat different objective function , (4b), which is formulated 
namely, as: 

minp I:q(I;eAq d(x;.,xq) + c1 + c2(card(Aq)•l)) 

or, equivalently, 

minp (LqLieAq d(x;.,xq) + c1p + c2(n-p)) 

(4b) 

(4b ' ) 

where, however, the setup cost (which, it is implied, as mentioned before in the descrip­
tion of assumptions to this formulation of the problem, contains the cost of the first loca­
tion served), is c1 = 5, while c2 = I, as before. Although the minimum appears to be placed 
in the same configuration, the character of the curve of objective function values changes 
a bit. 
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Figure L Data for a simple academic example of the facility location problem 

Table 1. Values ofQ5D(P) = QD(P) + Q5(P) for a series of partitions, according to formula 
(4), with c1 = 3 and c2 = 1 

fZ(P) - calcula- fZ(P)- p 
Qo(P) tion value fZo(P) Partitions (facility locations in bold) 

0 12*3+ 12*1 48 48 All locations are facility locations 12 

I 11*3+ 10*1 + 1*2 45 46 Merger of (0,0) and ( 1,0) 11 

2 I 0*3+8* I +2*2 42 44 Merger of (2,3) and (3 ,3) 10 

3 9*3+7*1 +2+3 39 42 Addition of(3,4) to (2,3) and (3,3) 9 

{(0,0), (1,0), (1,2)) {(2,3), (3,3), (3,4)), 4 
13 4*3+4*3 24 37 {(5,7), (6,8), (7,7)}, {(1,8), (2,7), (2,9)) 

{ (0,0), (I ,0), (1,2), (2,3), (3,3), (3,4)} , 3 
22 3*3+6+3+3 21 43 {(5,7), (6,8), (7,7)), {(1,8), (2,7), (2,9)) 

{(0,0), ( 1,0), (1,2), (2,3), (3,3), (3,4), (5,7), I 
55 I *3+ 12 15 70 (6,8), (7,7), (1 ,8), (2,7), (2 ,9)) 
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Table 2. Values oUZD(P) = QD(P) + Q5(P) for a series of partitions, according to (4b), 
with c 1 = 5 and c2 = 1 

Q'(P) - calcu- Q'(P)- p 
Qo(P) lation value Q'o(P) Partitions (facility locations in bold) 

0 12*5 60 60 All locations are facility locations 12 

I 11 *5+ 1*1 56 57 Merger of (0,0) and ( 1,0) II 

2 I 0*5+2* I 52 54 Merger of(2,3) and (3,3) 10 

3 9*5+1+2 48 51 Addition of (3,4) to (2,3) and (3 ,3) 9 

((0,0), (1,0), (1,2)) ((2,3), (3,3), (3,4)}, 4 
13 4*5+4*2 28 41 ((5 ,7), (6,8), (7,7)) , ((1,8), (2,7), (2,9)) 

((0,0), (1,0), (1,2), (2,3), (3 ,3), (3,4)}, 3 
22 3*5+5+2+2 24 46 ((5 ,7), (6,8), (7,7)) , ((1,8), (2,7), (2,9)) 

((0,0), (1 ,0), ( I ,2), (2,3), (3,3), (3,4), (5,7), I 
55 1 *5+ 11 16 71 (6,8), (7,7), (1 ,8), (2,7), (2,9)) 

6. Some algorithmic considerations: the reference to the k-means procedure 

We have already mentioned that, potentially, the problem naturally lends itself to the k­
means-like procedure, due mainly to the form of the first component of the objective func­
tion , involving the distances inside the catchments, and that despite the reservations, con­
cerning inappropriateness of the mean as the local solution. Let us remind that the classi­
cal k-means procedure, in general and quite rough terms, at that, takes the following 
course: 

0° Generate p 7 points as initial (facility location) seeds (in this case, the case of p­
centers, the points generated belong to X), usually p << n 

1° Assign to the facility location points all then points (locations) from the setX, 
based on minimum distance, establishing thereby clusters (catchments) Aq, q = 
1, ... ,p 

2° If the stop condition is not fulfilled, determine the representatives (here: facility 
locations) for the clusters Aq, otherwise STOP 

3° Go to 1°. 

The stop condition is, in a natural manner, constituted by the lack of changes in the as­
signment of locations to catchments. It may also be a certain minimum degree of changes, 
or a repetition of the assignments, after a number of iterations. Due to the known feature 
of fast convergence, the stop condition can also simply be constituted by the predefined 
limit number of iterations. 

Although the procedure converges very quickly, it can get stuck in a local minimum. Yet, 
owing to its positive numerical properties, it can be restarted from various initial sets of p 

7 We use the classical name of the k-means algorithm, although the number of clusters, referred to in this 
name as "k", is denoted in the present paper, confonn to the notation adopted in the bi-partial approach, by 
p. 
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points many times over, and the minimum values of the objective function obtained indi­
cate the proper solution (usually, a vast majority of results corresponds to the san1e con­
figuration, while the minority are the non-optimal local minima). 

In the here analysed problem of facility location, since such problems rarely are really 
large in the standard sense of data analysis problems, it is indeed quite feasible to run the 
k-means procedure, as outlined above, for the consecutive values of p in order to check 
whether a minimum over p can be found for a definite formulation of the facility-location­
related Q5o(P). Although we shall not be demonstrating this here, let us note that in view 
of the opposite monotonicity of the two components of Q5o(P) along p , the mininmm 
found over p is a global minimum (although, of course, it is not necessarily the solution to 
the problem considered, since we deal here only with an approximation of the actual prop­
er objective function). This procedure can be sinlplified so as to encompass only a part of 
the sequence of values of p, starting, say from p = 2 upwards, until a (single) minimum is 
encountered. 

7. Algorithmic considerations based on the bi-partial approach 

The direct application of the bi-partial algorithmic precepts 

We shall now present the algorithmic approach that is founded on the basic precepts of the 
bi-partial approach. Assuming, namely, the property that we have observed for the case of 
the here considered concrete objective function ( 4 ), that is - the opposite monotonicity of 
the two components of the objective function, we can reformulate it, obtaining, in the gen­
eral case, the following parametric problem: 

minp d'o(P,r) = rQo(P) + (1-r)Q\P), (6) 

where the parameter rE[0,l] corresponds to the weights we might attach to the two com­
ponents of the objective function. Actually, this parameter is used exclusively for the algo­
rithmic purposes, and it is not meant to express any sort of substantive weight, as we as­
sume that we ultinlately weigh equally the two components (i.e. r = ½). Here, we make no 
a priori assumptions as to the value of p, in distinction from the approach, outlined above, 
based on the classical k-means procedure. The form (6) enables the construction of a 
suboptimisation algorithm, provided the two components of the objective function are 
endowed with certain properties. We shall outline here the construction of this algorithm 
for the case of the objective function ( 4 ), for which at least an important part of the rele­
vant properties is satisfied (see Owsiii.ski, 2011, for a more complete account on the condi­
tions for the algorithmic effectiveness of the bi-partial approach). 

Thus, the above general fom1 is equivalent, for (4), to the following one: 

(7) 

Now, take the iteration step index, t, starting with t = 0, and calculate the successive val­
ues of r', corresponding to the optinla of (7) for the consecutive steps of the proposed pro­
cedure. Consider (7) for r0 = l. We obtain 

minp (I ·LqLieAq d(x;,xq) + 0·Iq(c1 + c2cardAq) = LqLieAq d(x;,xq)). (8) 

Since we did not make any assumptions, concerning the value of p, we can easily see that 
the global minimum for (8) is obtained for p = n, i.e. when each object (location) contains 
a facility (that is: each location constitutes a separate cluster). Denote this particular, ex­
treme (but also, in a way, "optimal") partition by P0. The situation described is illustrated 
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in the first line of Table I. The value of the original objective function is, therefore, equal 
n(c1 + c2), since the first component disappears, we deal with n facilities, and all cardAq = 
cardA; are equal I. 

Then, we decrease the value ofr from r0 = 1 down. At some point, for the value of the 
parameter r that we denote r 1, this parameter value is low enough to make the value of the 
second component of the objective function, (1-r)Lq(c 1 +c2cardAq), weigh sufficiently to 
warrant aggregation of two locations into one cluster, meaning that one facility would 
serve the two locations aggregated at this step. This happens when the following equality 
holds: 

(9) 

where P1 denotes the partition, which corresponds to the result of the initial aggregation 
operation mentioned, the equality from (9) being equivalent, in the case here considered, 
to 

(10) 

where(/ is the (aggregated) pair oflocations, for which the value ofr1 is determined. 
This value, conform to ( I 0) equals 

r 1(i'/) = c1/(d((/) + c1). (11) 

The simple relation thereby obtained, which determines the rule for aggregating, at least, 
the pairs of particular locations into clusters (the case of aggregation oflarger components 
being left out for a while) is justified by the fact that for each passage from some p to p-1 , 
accompanying such an aggregation, the value of the second component decreases by c1, 

while a value of distance, or a more complex function of distances, is added to the first 
component. 

Since we look for the highest possible r 1, which follows r0 = 1, it is obvious, also from 
(I 0) and (11 ), that the d(i' /) we are looking for must be the smallest one among those not 
yet contained inside the clusters (i.e., for this initial aggregation step - the smallest one 
among all the distances between objects). In the subsequent steps t we shall be using the 
equation (9) in its more general form, referring to the general formulation of the objective 
function, i.e. 

r;fo(P'-1,r') = r;f o(P',r'), (12) 

and derive from it the expression analogous to ( 11 ). ln this particular case - which is, an­
yway, quite similar to several of the implementations of the bi-partial approach for cluster­
ing- the equation, analogous to (11) is obtained from (12), meaning that at each step t the 
minimum of distance is being sought (although, in general , not just between the individual 
locations), exactly as in the classical progressive merger procedures, like single link, com­
plete link etc. 

The procedure stops when, for the first time, r' is obtained in the decreasing sequence of 
r0, r , r2, ... , having the value lower than ½ (the sequence ofr', if realised until the aggre­
gation of all locations into one cluster, will , of course, end at t = n-1 ). Falling below ½ 
means, namely, that "on the way" the partition P' was obtained, which was generated by 
the algorithm for r = ½, corresponding to the equal weights of the two components of the 
objective function. 

Thus, on the one hand, we deal with a procedure that is entirely analogous to the very 
popular, simple progressive merger algorithms, but, on the other hand, has an inherent 
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capacity of indicating the "solution" to the problem, without any reference to an external 
criterion, rather than just generating the all-embracing dendrogran1. We used the quotation 
marks, when speaking of"solution", because the procedure does not guarantee in any way 
the actual minimum of(S) (or the particular specific embodiments of this general function, 
like, in this case, (4), with its variants), since the operations, performed at each step, are 
lin1ited to aggregation. The experience with other cases shows that a simple search in the 
neighbourhood of the suboptin1al solution found suffices for finding the actual solution, if 
it actually differs from the suboptimal one. 

It is left to the Reader to see that if we use the definition ( 4b) instead of ( 4 ), the procedure 
derived following the above pattern is exactly the same, even though the concrete algebra­
ic formulae slightly differ. 

In general , the logic consists in the construction of a simile of (6), which, provided the 
involved components of the objective function behave not only so that they display oppo­
site monotonicity (this being the necessary and quite obvious condition, which is fulfilled 
by virtually all " reasonable" formulations), but also that this monotonicity takes place ap­
propriately along the branches of the dendrogram, secures the possibility of implementing 
the simple sub-optin1isation procedure here outlined. The potential in1provements over 
such a procedure are left to the considerations, associated with the particular cases, for 
which the approach is being implemented. 

It is obvious that the procedure here proposed is not only an approximation from the point 
of the optimum to the facility location problem, but also - with respect to the very cluster­
ing procedure, since we admit only aggregating operations. There may exist cases, when 
such a procedure does not yield the optin1um solution. Yet, for "appropriately well be­
haved" data, meaning lack of cumbersome shapes of clusters, first of all , this approxima­
tion works relatively well. 

The algorithmic return to the k-means paradigm 

It is, however, also possible to link the two paradigms, that is - the one of the bi-partial 
approach and of the k-means procedure, here - in the context of the facility location prob­
lem. Let us return, namely, to the formulation (4b): 

(4b ' ) 

and assume, quite reasonably, that CJ > c2 (or even CJ>> c2). Under such circumstances the 
procedure, which refers to the k-means paradigm, would be as follows: 

-- find the k-means-type solution to the clustering problem with d(x;,xq) for a sequence of 
values of p , potentially starting from p = I, thus obtaining the (approximation to the) min­
imum values of the internal sum of distances (recalling here that the approximation results 
from the fact that the k-means minimise the sums of squares of distances involved), i.e. 

LqL;eAq d(x;,xq) 

that we can denote D/ (p ), p = 1, 2, ... ; this sequence is decreasing, of course; 

-- calculate the values Dp '(p) + p(c 1-c2) , the second component neglecting the value c2n 
from (4b ' ) as constant, this second component constituting a sequence increasing linearly 
withp; 



Jan W. Owsinski 

-- we look for the minima in the thus obtained sequence of values; even though there may 
theoretically exist more than one local minimum alongp (see further on for a comment), it 
should suffice to stop at the very first such minimum. 

An illustration, based on the data for the previously presented trivial example, is provided 
in Fig. 2 (the data, corresponding to this diagram, are provided in Table 3 ). The respective 
minimum is not only singular, but is also very clearly seen. Let us once again emphasise 
that we deal here with definite approximations: (a) k-means approximating the centre 
sought; (b) the choice of the minimum, ifthere may be more of them, and, of course, (c) 
the entire formulation, approximating the tme economic aspect of the problem. With re­
spect to point (b) the essential aspect is associated with the choice of the locations - main 
influence being associated with the assignment oflocations to facilities from among i. all 
of the potential locations, ii. all of the existing ("demand") locations, iii. only a subset of 
selected locations. Then, regarding point ( c ), it is of foremost importance to secure mono­
tonicity of the facility cost component of the objective function. 

Minimising facility location costs with k-means 
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Figure 2. An example of application of the bi-partial concept, based on the k-means-like 
procedure (data from Fig. I) 

With respect to the trivial experiment, whose results are shown in Fig. 2 and Table 3, let 
us add, in the context of the above remarks, that it was assumed that the facility locations 
can not only belong to the set of the "demand locations" (having equal weights - "de­
mands"), but can also be picked at the integer nodes of the coordinate grid on the plane. 
The assumption of choosing only the "demand locations" as potential facility locations 
would have (the medoid algorithm), at least theoretically, shifted the position of the mini­
mum with respect top towards some lower value, since the values of distance sums, ob-
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tained from the k-means type process would tend to be higher at the beginning, i.e. would 
not decrease that rapidly alongp. 

Table 3. Account on the experiment, illustrated in Fig. 2, with data originating from Fig. 1 

Number of Locations of Division of catch- Values of objective function compo-
facilities , facilities on the ments among facili- nents and its total 
p = plane, (x,y) ties D/(n) p(c1-c2) D / ( o)+p(c1-c2) 

I 4,5 all locations in one 61 4 65 
group 

2 2,2; 4,8 divi sion into lower 31 8 39 
and upper groups 

3 2,2; 2,8; 6, 7 upper group is split 20 12 32 
4 1,1; 3,3; 2,8; 6,7 lower group is split 12 16 28 
5 1,0; 1,2; 3,3; 2,8; lower group is further 9 20 29 

6,7 split 
6 1,0; 1,2; 3,3; 1,8; left upper group is 8 24 32 

2,8; 6,7 split 
7 1,0; 1,2; 3,3; 1,8; right upper gro up is 7 28 35 

2,8; 6, 7; 6,8 split 
12 facilities located at all demand locations 0 48 48 
c, = 5, C2 = 1 

Let us also note that the above proposed procedure may be, actually, used with any kind of 
the k-means-like algorithm, including the fuzzy-set-based ones (for the initial work on this 
family of methods, see Dunn, 1974), like the classical FCM. In that case, the already men­
tioned managerial issue arises of the significance of the fact that particular demand loca­
tions i are assigned to the facilities q to a certain degree, µ;q E (0,1] through minimisation 
of the objective function 

LqL.;µ;q a ct(x;,xq), 

leading to the determination of then x p matrix of the memberships µ;q , where, additional­
ly, the exponent a > 1 establishes the "degree of fuzziness" of the clusters (facility catch­
ments) obtained from the FCM procedure. For a= 1 one obtains from this procedure the 
"crisp" clusters, corresponding to those, resulting from the classical k-means (see Bezdek 
and Pal, 1992), while for increasing values of a the µ;q tend to a uniform distribution, in 
the limit all being equal lip. Thereby, an instrument is provided for controlling the result­
ing values of µ;q , so that for "reasonable" values of the exponent a only few of the mem­
berships µ;q differ from 0 or 1. Like in the previously indicated case of cliques, these may 
be indicatively used as "emergency options", with an indication of preference being estab­
lished through the value of µ;q. 

7. Some comments and the outlook 

Extensions 

The illustration, here provided, even though extremely simple, is definitely sufficient to 
highlight the capacity of the bi-partial approach to deal with the p-median Ip-center type 
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of facility location problems. In fact, for (slightly) more complex formulations of the prob­
lem, like, say 

minp :Eq(:E;eAq d(x;,xq) + ci(q) + czl(card(Aq))) (13) 

i.e. where setup costs are calculated for each potential facility location separately, and}( .) 
is an increasing concave function, the relation analogous to (12) yields only marginally 
more intricate procedure, analogous to that based on (11 ), where for each aggregation the 
minimum has to be found for the two locations or clusters aggregated. 

The issue, worth investigation, which arises therefrom is: what realistic class of the facility 
location problems can be dealt with through the bi-partial approach? 

Another case that is of interest, indeed, in the context of facility location, exceeding the 
capacities of the standard approaches, based on mathematical programming, is associated 
with the quite natural formulation of the facility location problem, in which a hierarchy of 
centres is designed, where facilities are located, featuring varying properties, depending 
upon the level of the hierarchy. 

For this case, let us introduce a slightly more complex notation. Thus, let h denote the lev­
el of hierarchy, with l(l) being the number of catchments, determined for the level hand 
the catchment (of the preceding level) number l. The numbering oflevels starts here with 
h = I for the catchment q° = 1, which encompasses the entire set oflocations, xi , ... ,Xn. The 
respective minimisation problem, a simile of what we have been considering, might have 
the form of 

min p,, IIciieA, d(x;, Xq' )+c,(q")+c, f(card(Aq' ))) 
h=Hl=I q 

(14) 

where pH denotes the hierarchy of partitions into catchments A ,, with the partitions at 
q 

levels h being constituted by the sets of catchments {Aq, }:::( . Once the data for such a 

hierarchical facility location problem are given, the procedure, analogous to the one here 
outlined, might be used, with additional assumptions, concerning the working of the pro­
cedure at the consecutive levels h. 

Some conclusions 

The actual design of the procedure, based, on the one hand, on the precepts of the bi­
partial approach, and on the other hand- on the principles of the k-means-type algorithms, 
shall depend upon the shape of the problem at hand. In this context, the following remarks 
might be forwarded: 

(I) k-means outperform progressive merger procedures for data sets with numerous 
objects (locations), but not too many dimensions (here: by virtue of definition, ei­
ther very few, or just two), when storing of the distance matrix and operating on it 
is heavier than calculating np (much less than n2) distances at each iteration; in the 
cases envisaged n would not exceed thousands, and p is expected not to be higher 
than I 00, so that the two types of procedures might be quite comparable; 

(2) there exists a possibility of constructing a hybrid procedure, in which k-means 
would be performed for a sequence of values of pat the later stages of the bi-
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partial procedure, with the result of the aggregation, performed by the bi-partial 
procedure being the starting point for the k-means algorithm; 

(3) given the proposal by Dvoenko (2014), there exists also a possibility of imple­
menting directly the bi-partial version ofk-means, with specially designed fom1 of 
the two components of the objective function; this, however, would require, in­
deed, additional studies. 
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